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Abstract: In structural reliability analysis, the uncertainties related to resistance and load are generally expressed as random variables
that have known cumulative distribution functions. However, in practical applications, the cumulative distribution functions of some
random variables may be unknown, and the probabilistic characteristics of these variables may be expressed using only statistical
moments. In the present paper, in order to conduct structural reliability analysis without the exclusion of random variables having
unknown distributions, the third-order polynomial normal transformation technique using the first four central moments is investigated,
and an explicit fourth-moment standardization function is proposed. Using the proposed method, the normal transformation for indepen-
dent random variables with unknown cumulative distribution functions can be realized without using the Rosenblatt transformation or
Nataf transformation. Through the numerical examples presented, the proposed method is found to be sufficiently accurate in its inclusion
of the independent random variables which have unknown cumulative distribution functions, in structural reliability analyses with
minimal additional computational effort.
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Introduction

The search for an effective structural reliability method has led to
the development of various reliability approximation techniques,
such as the first-order reliability method �FORM� �Hasofer and
Lind 1974; Rackwitz 1976; Shinozuka 1983�, the second-order
reliability method �SORM� �Der Kiureghian et al. 1987; Der
Kiureghian and De Stefano 1991; Cai and Elishakoff 1994�,
importance sampling Monte Carlo simulation �Melchers 1990; Fu
1994�, first-order third-moment reliability method �FOTM�
�Tichy 1994�, response surface approach �Rajashekhar and Elling-
wood 1993; Liu and Moses 1994�, directional simulation methods
�Nie and Ellingwood 2000�, and others. In almost all of these
methods, the basic random variables are assumed to have a
known cumulative distribution �CDF� or probability density func-
tion �PDF�. Based on CDF/PDF, the normal transformation �x-u
transformation� and its inverse transformation �u-x transforma-
tion� are realized by using Rosenblatt transformation �Hohen-
bichler and Rackwitz 1981� or Nataf transformation �Liu and Der
Kiureghian 1986�. In reality, however, due to the lack of statistical
data, the CDFs/PDFs of some basic random variables are often
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unknown, and the probabilistic characteristics of these variables
are often expressed using only statistical moments. In such cir-
cumstances, the Rosenblatt transformation or Nataf transforma-
tion cannot be applied, and a strict evaluation of the probability of
failure is not possible. Thus, an alternative measure of reliability
is required.

In the present paper, the third-order polynomial normal trans-
formation technique using the first four central moments is inves-
tigated. An explicit fourth-moment standardization function is
proposed. Using the proposed method, the normal transformation
for independent random variables with unknown CDFs/PDFs can
be realized without using the Rosenblatt transformation or Nataf
transformation. Through the numerical examples presented, the
proposed method is found to be sufficiently accurate to include
the independent random variables with unknown CDFs/PDFs in
structural reliability analyses with minimal additional computa-
tional effort.

Review of Reliability Method Including Random
Variables with Unknown CDF/PDFs

A comprehensive framework for the analysis of structural reliabil-
ity under incomplete probability information was proposed by
Der Kiureghian and Liu �1986�. It was an approach based on the
Bayesian idea, in which the distribution is assumed to be a
weighted average of all candidate distributions, where the weights
represent the subjective probabilities of respective candidates.
The proposed method was found to be consistent with full distri-
bution structural safety theories, and has been used to measure
structural safety under imperfect states of knowledge. However,
one needs to select the candidate distributions and weights when
using this method. A method of estimating complex distributions

using B-spline functions has been proposed by Zong and Lam



�1998�, in which the estimation of the PDF is summarized as a
nonlinear programming problem.

Another way to conduct structural reliability analysis, includ-
ing random variables with unknown CDFs/PDFs, is relaying the
u-x and x-u transformations directly using the first few moments
of the random variable, which can be easily obtained from the
statistical data. This method can be divided into two routes; one is
using the distribution families, and another is using polynomial
normal transformation. As for the distribution families; Burr sys-
tem, John system, Pearson system �Stuart and Ord 1987; Hong
1996�, and Lambda distribution �Ramberg and Schmeiser 1974;
Grigoriu 1983� can be used. Since the quality of approximating
the tail area of a distribution is relatively insensitive to the distri-
bution families selected �Pearson et al. 1979� and the solution of
nonlinear equation is required to determine the parameters of the
Burr and John systems or Lambda distribution, the Pearson sys-
tem is commonly used.

Without loss of generality, a random variable x can be stan-
dardized as follows:

xs =
�x − ��

�
�1�

where � and �=mean value and standard deviation of x, respec-
tively.

For a standardized random variable xs, f , the PDF of xs, satis-
fies the following differential equation in the Pearson system
�Stuart and Ord 1987�

1

f

df

dxs
= −

axs + b

c + bxs + dxs
2 �2a�

where

a = 10�4X − 12�3X
2 − 18 �2b�

b = �3X��4X + 3� �2c�

c = 4�4X − 3�3X
2 �2d�

d = 2�4X − 3�3X
2 − 6 �2e�

where �3X and �4X=third- and fourth-dimensionless central mo-
ment, i.e., the skewness and kurtosis of x.

In Eq. �2�, the parameters are easily and explicitly determined
from the first four moments, and the forms of PDFs are dependent
on the values of parameters a, b, c, and d. However, there are 12
kinds of PDFs in the Pearson system, and numerical integration is
generally required to determine these PDFs �Zhao and Ang 2003�.

As for the method that uses polynomial transformation, the
third-order polynomial normal transformation method was sug-
gested by Fleishman �1978�, in which the transformation is for-
mulated as

xs = a1 + a2u + a3u2 + a4u3 �3�

where xs=standardized random variable; u=standard normal ran-
dom variable, and a1, a2, a3, and a4=polynomial coefficients that
can be obtained by making the first four moments of the left side
of Eq. �3� equal to those of the right side.

Since the form of Eq. �3� is simple if the coefficients a1, a2, a3,
and a4 are known, it has several applications pertaining to struc-
tural reliability analysis. However, the determination of the four
coefficients is not easy, since the solution of nonlinear equations
has to be found �Fleishman 1978�. Some methods to determine

the polynomial coefficients are reported by Chen and Tung
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�2003�. These include the moment-matching method �Fleishman
1978�, least-square method �Hong and Lind 1996�, and
L-moments method �Tung 1999�. Because the first four moments
�mean, standard deviation, skewness, and kurtosis� having clear
physical definitions are common in engineering and can be easily
obtained using the sample data, the determination of the four
coefficients using the first four moments will be focused on in this
paper.

As described above, since the solution of nonlinear equations
has to be found, the Fleishman expression is inexplicit. Thus, the
second-order Fisher-Cornish expansion �Fisher and Cornish 1960�
is sometimes used, which is expressed as

xs = − h3 + �1 − 3h4�u + h3u2 + h4u3 �4a�

in which

h3 =
�3X

6
, h4 =

�4X − 3

24
�4b�

One can see that Eq. �4� is in close form and is quite easy to use;
however, since the first four moments of the right side of Eq. �4a�
are not equal to those of the left side, the transformation generates
relatively large errors.

Winterstein �1988� developed an expansion expressed as

xs = − k̃h̃3 + k̃�1 − 3h̃4�u + k̃h̃3u2 + k̃h̃4u3 �5a�

where

h̃3 =
�3X

4 + 2�1 + 1.5��4X − 3�
, h̃4 =

�1 + 1.5��4X − 3� − 1

18

�5b�

k̃ =
1

�1 + 2h̃3
2 + 6h̃4

2
�5c�

Apparently, the Winterstein formula requires �4X�7/3 because
of Eq. �5b�.

Explicit Fourth-Moment Standardization Function

Expression of Standardization Function

It has been found that the Winterstein formula gives much im-
provement to the Fisher-Cornish expansion while managing
to retain its simplicity and explicitness. However, as will be
described later, since the differences of the first four moments
between the two sides of Eq. �5a� are still large, the transforma-
tion is still not convincing. For obvious reasons, a transformation
for use in practical engineering should be as simple and accurate
as possible.

In this paper, a simple explicit fourth-moment standardization
function is proposed, as is illustrated in the following equation,
which was developed from a large amount of data of third- and
fourth-dimensionless central moments through trial and error

xs = Su�u� = − l1 + k1u + l1u2 + k2u3 �6a�

where Su�u� denotes the third polynomial of u; and the coeffi-
cients l1, k1, and k2 are given as

l1 =
�3X , l2 =

1
��6�4X − 8�3X

2 − 14 − 2� �6b�

6�1 + 6l2� 36
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k1 =
1 − 3l2

�1 + l1
2 − l2

2�
, k2 =

l2

�1 + l1
2 + 12l2

2�
�6c�

From Eq. �6b�, the following condition should be satisfied:

�4X � �7 + 4�3X
2 �/3 �6d�

Using Eq. �6d�, a lower boundary line in the �3X
2 −�4X plane can

be depicted as shown in Fig. 1, in which the operable area of the
present formula is indicated as the shaded region. In Fig. 1, the
limit for all distributions expressed as �4X=1+�3X

2 �Johnson and
Kotz 1970� is also depicted along with the �3X

2 −�4X relationship
for some commonly used distributions, i.e., the normal, Gumbel,
Laplace, and the exponential distribution, which are represented
by a single point, the lognormal, the Gamma, the Frechet, and the
Weibull distributions—represented by a line—are also depicted.
One can see that the operable area of the present formula covers
a large area in the �3X

2 −�4X plane, and the �3X
2 −�4X relationship

for most commonly used distributions is in the operable area of
the present formula. This implies that Eq. �6d� is generally oper-
able for common engineering use.

When �4X=3+4�3X
2 /3, one has l1=�3X /6, k1=1/ �1+�3X

2 /36�,
and l2=k2=0, then Eq. �6a� can be expressed as

xs = k1u −
1

6
�3X�u2 − 1�

when �3X is small enough, k1�1, the equation above is simplified
as

xs = u −
1

6
�3X�u2 − 1� �7�

which becomes the first-order Fisher-Cornish expansion.
Particularly, if �3X=0 and �4X=3, then l1, l2, k1, and k2 will be

obtained as l1= l2=k2=0 and k1=1, and the u-x transformation
function will be degenerate as xs=u.

From Eq. �6�, the x-u transformation is readily obtained as

u = −
�3 2p

�3 − q + �
+

�3 − q + �

�3 2
−

l1

3k2
�8a�

Fig. 1. Operable area of the present formula
where
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� = �q2 + 4p3, p =
3k1k2 − l1

2

9k2
2 ,

q =
2l1

3 − 9k1k2l1 + 27k2
2�− l1 − xs�

27k2
3 �8b�

Comparisons of Polynomial Coefficients

The four polynomial coefficients—a1, a2, a3, and a4—determined
by the proposed formula are illustrated in Fig. 2, compared with
those obtained using Fisher-Cornish expansion, Winterstein
formula, and the accurate coefficients obtained from moment-
matching method �Fleishman 1978�. The coefficients are ex-
pressed as functions of �4X for �3X=0.0, 0.4, 0.8, and 1.2. One
can clearly see from Fig. 2 that:
1. The coefficients of Fisher-Cornish expansion have the great-

est differences from the accurate coefficients except when
the random variable x is nearly a normal random variable.

2. The Winterstein formula markedly improves the Fisher-
Cornish expansion and provides good results when �3X is
small and �4X is within a particular range. However, as �3X

becomes larger, especially when �3X is larger than 0.4, the
coefficients obtained by the Winterstein formula will have
significant differences compared to the accurate ones.

3. The coefficients obtained using the proposed formula are in
close agreement with the accurate ones throughout the entire
investigation range.

As described above, the parameters of an accurate fourth-
moment standardization function should make the first four mo-
ments of the function Su�u� �the right side of Eq. �6a�� be equal to
those of the original random variable �the left side of Eq. �6a��.
For the given pair value of �3X and �4X, the polynomial coeffi-
cients can be determined by using Eqs. �6b� and �6c� and Eq. �6a�
can be thus determined. Since the right side of Eq. �6a� only
includes the standard normal variable, the skewness �3S and kur-
tosis �4S of Su�u� can be easily obtained as

�3S = 6k1
2l1 + 8l1

3 + 72k1k2l1 + 270k2
2l1 �9a�

�4S = 3�k1
4 + 20k1

3k2 + 210k1
2k2

2 + 1260k1k2
3 + 3465k2

4�

+ 12l1
2�5k1

2 + 5l1
2 + 78k1k2 + 375k2

2� �9b�

Obviously, �3S and �4S should be equal to �3X and �4X, respec-
tively, if Su�u� is accurate. �3S and �4S obtained using the present
method are depicted in Fig. 3, together with the accurate ones and
those obtained using the Fisher-Cornish expansion and Winter-
stein formula. In Fig. 3, the following two relationships of �3X

and �4X are investigated
• Case 1, �4X=2.7+1.5�3X

2 ; and
• Case 2, �4X=4+2�3X

2 .
One can clearly see from Fig. 3 that the relationships between

�3S and �4S obtained by Fisher-Cornish expansion and Winter-
stein formula differ greatly from the accurate ones, while �3S and
�4S obtained by the proposed formula are in close agreement with
the accurate ones.

Thus, Eq. �8� is the suggested simple and accurate fourth-
moment standardization function. For a random variable, if the
first four moments can be obtained, the x-u and u-x transforma-
tion can be realized with Eqs. �8� and �6�, respectively. Using the
proposed method, the structural reliability analysis including the
random variables with unknown CDFs/PDFs can be conducted

without using the Rosenblatt transformation.
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Reliability Analysis Including Random Variables
with Unknown CDFs/PDFs

Using the first four central moments of an arbitrary random vari-
able x �continuous or discontinuous� with unknown CDFs/PDFs,
a standard normal u can be obtained using Eq. �8�, and a random
variable x� corresponding to u can be obtained from Eq. �6�.
Since u is a continuous random variable, x� will also be a con-
tinuous random variable. Although x and x� are different random
variables, they correspond to the same standard normal random
variable, and have the same fourth central moment and the same
statistical information source. Therefore, f�x�� can be considered
to be an anticipated PDF of x. Using this PDF, reliability analysis
including random variables with unknown CDFs/PDFs will be
possible. Because the u-x and x-u transformations are realized
directly by using Eqs. �6� and �8�, the specific form of f�x�� is not
required in FORM/SORM. Assuming that the random variables
with unknown CDFs/PDFs are independent of those that have

mial coefficients using four different methods
Fig. 2. Comparisons of the determination of polyno
Fig. 3. Comparison of �4S and �3S using four different methods
 CDFs/PDFs and are independent of each other as well, from Eqs.
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�6� and �8�, the element of the Jacobian matrix corresponding to a
random variable x with an unknown CDF/PDF can be given as

Jii =
�ui

�xi
=

1

��k1 + 2l1ui + 3k2ui
2�

�10�

For a reliability analysis with all the random variables that have a
known CDF/PDF, the analysis can be conducted using the general
FORM procedure �Ang and Tang 1984�. For a reliability analysis
including random variables with unknown CDFs/PDFs, the ran-
dom variables X can be divided into two groups X= �X1 ,X2�,
where X1 are the random variables that have known CDFs/PDFs,
and X2 are those with unknown CDFs/PDFs. For X1, the normal
transformation and Jacobian matrix are conducted using the
Rosenblatt transformation, and for X2, the normal transformation
is conducted using Eq. �8�, and the Jacobian matrix are obtained
using Eq. �10�. Then, the procedure is identical to that of the
general FORM, with the exception of the conduction of the nor-
mal transformation and the computation of the elements of the
Jacobian matrix corresponding to the random variables with un-
known CDFs/PDFs. Therefore, the reliability analysis including
random variables with unknown CDFs/PDFs using the proposed
method requires only minimal extra computational effort, com-
pared to the general FORM procedure.

When random variables that have unknown CDFs/PDFs are
contained in a performance function with strong nonlinearity, for
which a more accurate method such as SORM is required, the
proposed method can also be applied. In such a case, the compu-
tational procedure is identical to that of general SORM with the
exception of the u-x and x-u transformations and the computation
of the elements of the Jacobian matrix corresponding to the ran-
dom variables with unknown CDFs/PDFs.

Numerical Examples

u-x and x-u Transformations for Random Variables
with Known CDFs/PDFs

In evaluating a normal transformation technique, the first concern
could be how the relation between non-normal and normal vari-
ables is described by the technique. Suppose a random variable x
is known to have a PDF, f�x�, the u-x and x-u transformations can
be obtained by using the proposed fourth-moment standardization

Fig. 4. u-x and x-u transform
function or the other aforementioned normal transformation tech-
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niques. Since the Rosenblatt transformation completely preserves
the known marginal distribution, that is, F�x�=��u�, it is used
herein as the benchmark in performance evaluation for the other
normal transformation techniques.

The first example considers a Gumbel random variable that
has the following PDF:

f�x� =
1

�
exp�− exp�� − x

�
	 + �� − x

�
	
 �11�

For �=0.550 and �=0.780, the mean value, standard deviation,
skewness, and kurtosis are obtained as �X=1, �X=1, �3X=1.140,
and �4X=5.4, respectively.

The variations of the u-x transformation function with respect
to u and the variations of the x-u transformation function with
respect to xs are shown in Figs. 4�a and b�, respectively, for the
results obtained using the Rosenblatt transformation, the present
fourth-moment transformation, the third-moment transformation
�Zhao and Ono 2000�, the Fisher-Cornish expansion, and the
Winterstein formula. Fig. 4 reveals the following:
1. The results of the Fisher-Cornish expansion exhibit the great-

est differences from the results obtained by the Rosenblatt
transformation, especially when the absolute value of u or xs

is large.
2. Since only the information of the first three central moments

is used in the third-moment transformation, the method
yields significant errors when the absolute value of u or xs is
large for this example.

3. The transformation function obtained using the Winterstein
formula provides good results when the absolute value of u
or xs is small, while when the absolute value of u or xs

is large, the results obtained from the Winterstein formula
differ greatly from those obtained using the Rosenblatt
transformation.

4. The proposed method performs better than the third-moment
transformation, the Fisher-Cornish expansion, and the Win-
terstein formula, and the results of the proposed transforma-
tion coincide with those of the Rosenblatt transformation
throughout the entire investigation range.

The second example considers a lognormal random variable
with parameters 	=2.283 and 
=0.198. The mean value, standard
deviation, skewness, and kurtosis are obtained as �X=10.0,
�X=2.0, �3X=0.608, and �4X=3.664, respectively.

The variations of the u-x and x-u transformation are shown in

for Gumbel random variable
ations
Figs. 5�a and b�, respectively, for the results obtained using the



Rosenblatt transformation, the present fourth-moment transforma-
tion, the third-moment transformation, the Fisher-Cornish expan-
sion, and the Winterstein formula. Again, one can clearly see from
Fig. 5 that the proposed method performs better than the third-
moment transformation, the Fisher-Cornish expansion, and the
Winterstein formula, and the results of the proposed transforma-
tion coincide with those of the Rosenblatt transformation through-
out the entire investigation range.

Reliability Analysis Including Random Variables with
Unknown CDF/PDFs

The third example considers the following performance function,
which is an elementary reliability model that has several
applications:

G�X� = dR − S �12�

where R=resistance having �R=500 and �R=100; S=load with a
coefficient of variation of 0.4; and d=modification of R having
normal distribution, �d=1 and �d=0.1.

The following six cases are investigated under the assumption
that R and S follow different probability distributions:
• Case 1: R is Gumbel �Type I-largest� and S is Weibull �Type

III-smallest�;,
• Case 2: R is gamma and S is normal;
• Case 3: R is lognormal and S is gamma;
• Case 4: R is lognormal and S is Gumbel;
• Case 5: R is Weibull and S is lognormal; and
• Case 6: R is Frechet �Type II-largest� and S is exponential.

Because all of the random variables in the performance func-
tion have known CDFs/PDFs, the first-order reliability index for
the six cases described above can be readily obtained using
FORM. In order to investigate the efficiency of the proposed re-
liability method, including random variables with unknown
CDFs/PDFs, the CDF/PDF of random variable R in the six cases
is assumed to be unknown, and only its first four moments are
known. With the first four moments, the u-x and x-u transforma-
tions in FORM can be performed easily using the proposed
method, and then the first-order reliability index, including ran-
dom variables that have unknown CDFs/PDFs, can also be
readily obtained.

The skewness and kurtosis of R corresponding to cases 1–6
are easily obtained as 1.14 and 5.4, 0.4 and 3.24, 0.608 and 3.664,
−0.352 and 3.004, and 2.353 and 16.43, respectively. The first-

Fig. 5. u-x and x-u transforma
order reliability index obtained using the CDF/PDF of R, and
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using only the first four moments of R, are depicted in Fig. 6 for
mean values of S in the range of 100–500. Fig. 6 reveals that, for
all six cases, the results of the first-order reliability index obtained
using only the first four moments of R are in agreement with
those obtained using the CDF/PDF of R. This is to say that the
proposed method is accurate enough to include random variables
with unknown CDFs/PDFs.

For Case 4, the detailed results obtained while determining the
design point using the CDF/PDF of R and using the first four
moments of R are listed in Table 1. Table 1 shows that the check-
ing point �in original and standard normal space�, the Jacobian,
and the first-order reliability index obtained in each iteration
using the first four moments of R �columns 6–9� are generally
close to those obtained in each iteration using the CDF/PDF of R
�columns 2–5�.

As an application of Example 3, the fourth example considers
the following performance function of an H-shaped steel column

G�X� = AY − C �13�

where A=section area; Y =yield stress; and C is the compressive
stress. The CDFs of A and Y are unknown. The only information
that is known about them is their first four moments �Ono
et al. 1986�, i.e., �A=71.656 cm2; �A=3.691 cm2; �3A=0.709;
�4A=3.692; �Y =3.055t / cm2; �Y =0.364; �3Y =0.512; and
�4Y =3.957. C is assumed as a lognormal variable with a mean
value of �C=100t and a standard deviation of �C=40t. The skew-

or lognormal random variable

Fig. 6. Comparisons of first-order reliability index with known and
unknown CDFs/PDFs
tions f
RNAL OF STRUCTURAL ENGINEERING © ASCE / JULY 2007 / 921



ness and kurtosis of C can soon be obtained as �3C=1.264 and
�4C=5.969.

Although the CDFs of A and Y are unknown, since the first
four moments are known, the x-u and u-x transformations can be
easily realized using the present method instead of the Rosenblatt
transformation, and FORM can be readily conducted with results
of �FORM=2.079 and Pf =0.0188. Furthermore, using Eq. �6�, the
random sampling of A and Y can be easily generated without
using their CDFs, and thus, the Monte Carlo simulation �MCS�
can be approximately conducted. The probability of failure of this
performance function is obtained as Pf =0.0183, and the corre-
sponding reliability index is equal to 2.090 when the number of
samples taken is 500,000. The coefficient of variation �COV� of
this MCS estimate is 1.035%. One can see that the results ob-
tained by the two methods for this example are almost the same.

Application in Point-Fitting SORM

The fifth example considers the following performance function;
a plastic collapse mechanism of an elastoplastic frame structure
with one story and one bay, as shown in Fig. 7

G�X� = M1 + 3M2 + 2M3 − 15S1 − 10S2 �14�

The variables of Mi and Si are statistically independent and log-
normally distributed, and have means of �M1=�M2=�M3

=500 ft K, �S1=50 K, and �S2=100 K, respectively, and COVs
of VM1=VM2=VM3=0.15, VS1=0.30, and VS2=0.20, respectively.

Because all of the random variables in the performance func-
tion shown in Eq. �14� have a known CDF/PDF, the reliability
index can be readily obtained using FORM/SORM. The FORM
reliability index is �FORM=2.851, which corresponds to a failure
probability of Pf =2.181�10−2. Using the MCS method, the reli-

Table 1. Comparisons of FORM Procedure with Known and Unknown

Iteration

Using CDF/PDF

Checking point
Jacobian
�dx /du��x� �u�

1 1.000 0.000 0.100

500.000 0.099 99.021

200.000 0.177 76.492

2 0.916 −0.837 0.100

326.151 −2.058 64.592

284.326 1.102 107.917

5 0.947 −0.528 0.100

403.013 −0.990 79.814

381.741 1.881 143.638

Fig. 7. One-story one-bay frame
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ability index is obtained as �MCS=2.794, and the corresponding
probability of failure is equal to 2.603�10−3. The COV of this
MCS estimate is 0.875%. Using the point-fitting SORM �Zhao
and Ono 1999�, the point-fitted performance function is obtained
as

G�u� = 1219.14 + 73.66u1 + 218.97u2 + 146.75u3 − 151.26u4

− 184.59u5 + 5.20u1
2 + 14.17u2

2 + 9.89u3
2 − 57.05u4

2

− 25.61u5
2 �15�

The average curvature radius is obtained as R=56.62 and the
second-order reliability index �Zhao et al. 2002� is obtained as
�SORM=2.816, which corresponds to a failure probability of
Pf =2.44�10−3.

In order to investigate the application of the proposed reliabil-
ity method, including random variables with unknown CDF/PDFs
to the point-fitting SORM, the CDFs/PDFs of random variables
S1 and S2 are assumed to be unknown, and only the first four
moments are known. Using the first four moments, the u-x and
x-u transformations can be performed easily using the proposed
method, and then the point-fitting SORM, including random vari-
ables with unknown CDFs/PDFs, can also be performed easily.
The point-fitted performance function is obtained as

G��u� = 1233.15 + 73.65u1 + 218.97u2 + 146.75u3 − 166.77u4

− 188.82u5 + 5.20u1
2 + 14.17u2

2 + 9.89u3
2 − 52.92u4

2

− 25.26u5
2 �16�

The average curvature radius is given as R=−63.31 and the
second-reliability indices is obtained as �SORM=2.817, which cor-
responds to a failure probability of Pf =2.43�10−3. One can see
that the results obtained using the first four moments of S1 and S2

are very close to those obtained using the CDFs/PDFs of S1 and
S2. This is to say that the proposed u-x and x-u transformations
are applicable to the point-fitting SORM.

The sixth example considers the following strong nonlinear
performance function

G�x� = x1
4 + x2

2 − 50 �17�

where x1 and x2=statistically independent; x1= lognormal variable
with mean value of 5 and COV of 0.2; and x2=Gumbel variable
with mean value of 10 and COV of 1.

Because x1 and x2 have a known CDF/PDF, using FORM,
SORM, and MCS, the reliability indices can be readily obtained

DFs for Example 3

Using the first four moments

Checking point
Jacobian
�dx /du� ��x� �u�

1.000 0.000 0.100 2.254

500.000 0.099 99.017

200.000 0.177 76.492

0.916 −0.836 0.100 2.224

326.142 −2.055 65.484

284.319 1.102 107.914

0.947 −0.528 0.100 2.190

403.132 −0.989 79.752

381.845 1.881 143.674
CDF/P

�

2.254

2.219

2.190
as: �FORM=3.254; �SORM=3.562; and �MCS=3.570 �the COV of



MCS is 3.35%�. In order to investigate the application of the
proposed reliability method, including random variables with un-
known CDFs/PDFs to FORM, SORM, and MCS, the CDFs/PDFs
of random variables x1 and x2 are assumed to be unknown, and
only the first four moments are known. The results are obtained
as: �FORM=3.220; �SORM=3.513; and �MCS=3.509 �the COV of
MCS is 2.98%�. Apparently, the results obtained by using the first
four moments of x1 and x2 are close to those obtained using the
CDFs/PDFs of x1 and x2.

Conclusions

1. A simple explicit fourth-moment standardization function
is proposed. It is found to be accurate enough to include
independent random variables with unknown CDFs/PDFs in
reliability analysis using FORM/SORM.

2. Since the proposed fourth-moment formula can give a good
approximation for the polynomial coefficients using the first
four central moments, the present method provides more ap-
propriate u-x and x-u transformation results compared to the
third-moment function, Fisher-Cornish expansion, or Winter-
stein formula.
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Notation

The following symbols are used in this paper:
a, b, c, and d � coefficients in the PDF of Pearson

system;
a1, a2, a3, a4 � polynomial coefficients used in the

third-order polynomial normal
transformation;

f�X� � joint probability density function of X;
G�X� � performance function;
h3 ,h4 � Hermite series coefficients �Eq. �4��;

h̃3 , h̃4 , k̃ � Hermite series coefficient �Eq. �5��;
l1 , l2 ,k1 ,k2 � coefficients of Eq. �6�;

Pf � probability of failure;
R � resistance;
S � load;

Su�u� � the third polynomial of u;
U � standard normal random variables;
u � standard normal random variable;
V � coefficient of variation;
X � random variables;
xs � random variable corresponding to x with

its mean value=0 and standard deviation
=1;

�3X � coefficient of skewness of random
variable x;

�4X � coefficient of kurtosis of random variable
x;

�FORM � first-order reliability index;

�SORM � second-order reliability index;

JOU
� � mean value;
� � standard deviations; and

��x� � standard normal probability distribution
with argument x;
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